
Coroutine Intro with Rust

Zero-cost abstraction of async framework

1

- By Amanda Tian

2

Rust Language is …

- a general purpose language for both system programming and
applications, originated from Mozilla in 2006

- high performance and memory efficient without runtime or GC

- Memory and thread safety with type system and ownership
model at compile time

- Linux 6.1 officially adds support for Rust in kernel

3

Agenda

- Asynchronous programming basics
- Rust async mechanism
- Runtime & task scheduling
- About stackful coroutine

Part 1
Asynchronous programming basics

4

5

Concurrency vs. Parallelism

Asynchronous: describe a language feature to enable concurrent or parallel programming

Parallel: doing a lot of things at the
same time

Concurrency: dealing a lot of things
at the same time

figure src

https://www.baeldung.com/cs/concurrency-vs-parallelism

6

Traditional OS threads with one thread per task blocks:

I/O types - synchronous blocking

Pros:
- Simple, straightforward logic
- Free use with kernel’s management

Cons:
- Limited number of tasks with large stack mem
- Context switch is bottleneck in high concurrency

7

I/O types - asynchronous non-blocking

Event driven + I/O multiplexing

figure src

Pros:
- No context switch, relative low mem cost

Cons:
- Callback hell, nested callback chains hard to

maintain and understand

https://laptrinhx.com/concurrency-in-spring-webflux-1169818345/

8

I/O types - synchronous non-blocking

Coroutines:
- Pausable cooperative multitask able to yield and resume
- Write async code just in synchronous manner

“Coroutines are computer program components that
generalize subroutines for non-preemptive multitasking,

by allowing execution to be suspended and resumed.”
 - Wikipedia

9

Variant of functions enable concurrency via cooperative multitasking

“Coroutines are computer program components that
generalize subroutines for non-preemptive multitasking,

by allowing execution to be suspended and resumed.”
 - Wikipedia

10

Preemptive vs. Cooperative Multitasking

Preemptive:
system forcibly suspend running task and switch to another

Cooperative:
task voluntarily yield control periodically or idle or blocked

Part 2
Rust async mechanism

11

12

Rust async mechanism - overview

Rust compiler:
- async keyword, .await syntax

Rust std:
- Basic Future trait for pausable task
- Waker type to wake up a task

Rust async runtime

13

Rust async mechanism - async/await

async/await => generator

std::ops::generator example:

14

Rust async mechanism - async/await

async/await => generator => statemachine => impl Future

15

Rust async mechanism - Future trait

Future exposes poll method:
- Called by future to drive task execution
- Return Pending when blocked
- Return Ready with output when finished

Poll method defines the statemachine of Future

A future represents an asynchronous computation obtained by use of async.

16

Rust async mechanism - impl a Future

Futures implementation:
- Leaf future (I/O resource) usually by runtime
- Non-leaf future generated by compiler via async

Memory optimization:
- Zero-cost abstraction allow no heap allocation or

dynamic dispatch
- Reuse memory for non-overlap variables

17

Rust async mechanism - Waker

Waker:
- std defined interface to wake up a

suspended task when related I/O event ready

- Runtime creates and defines data, vtable, i.e.
HOW to wake a task up

- Passed around wrapped in a Context

Part 3
Runtime and task scheduling

18

19

Runtime overview

What’s runtime?
- Rust std provides minimal primitive: Future trait, async/await for pausable async tasks
- Runtime act as execution context to drive the futures to completion

What runtime consists?
- Executor: a task scheduler usually with task queue
- Reactor: I/O driver backed by system event queue (mio crate over epoll/kqueue/IOCP)
- I/O components: non-blocking APIs interact with Reactor

Rust community runtimes crates:

src

https://kerkour.com/rust-async-await-what-is-a-runtime

20

Tokio interfaces

- #[tokio_main]: annotate the main function as async

- block_on: runtime’s entry point, runs a future to completion

- tokio::spawn: spawn new future as Tasks, executed by runtime concurrently

- JoinHandle: handle to spawned task to retrieve output on Task finish

- tokio::spawn_blocking: runs blocking functions on executor, usually on a separate
thread pool from non-blocking tasks

- tokio::block_in_place: spawn blocking task and turn current thread to blocking
thread, move existing tasks to other worker threads

21

Task scheduling (single thread)

figure src

Executor and reactor form an
event-loop, loosely decoupled by
Future and Waker

Waker in tokio:
- A reference to the task itself
- Wake pushes task to the queue

https://www.ihcblog.com/rust-runtime-design-1/

22

Task scheduling (single thread)

I/O component:
1. Provides non-blocking API
2. Register I/O event fd to reactor, with correlated Waker

Executor:
1. Poll each task on queue as far as possible
2. Give control to reactor when idle

Reactor (underlying Mio - metal I/O):
1. Waiting for I/O event blockingly
2. Wake up the task with event ready
3. Give control back to executor

23

Task scheduling (multi-thread)

Work-stealing model

Global queue Separate local queue

ref

https://tokio.rs/blog/2019-10-scheduler

24

Handling multiple tasks - join

tokio::join!():
Waits on multiple concurrent branches, returning
when all branches complete.

25

Handling multiple tasks - join

tokio::select!():
Waits on multiple concurrent branches, returning
when the first branch completes, cancelling the
remaining branches.

Part 4
About stackful coroutine

26

27

More about coroutines…

Coroutine classification:
- asymmetric vs. symmetric
- first-class object vs. constrained construct
- stackful vs. stackless

Stackful coroutine:
- Future state stored as call stack, allocated on heap
- Task switched by context switch
- Also known as fibers, green threads, e.g. Goroutine

28

Hack with context switch

29

Stackful coroutine - a toy

Thread:
- abstraction of coroutine holds

its stack and context with
register values

30

Stackful coroutine - a toy
Runtime:

- API to spawn new threads
- main loop to trigger the execution of threads
- perform context switch when a thread is not Ready

31

Stackful coroutine - a toy

Context switch:
- Store the current registers to rdi (old thread)
- Load from rsi (new thread) to current registers

32

Stackful vs. stackless coroutine

Stackless coroutine:
- Lightweight with zero-cost abstraction backed with state machine
- No context switch on task scheduling

Stackful coroutine:
- With call stack stored, capable to yield at any time
- Allow preemptive scheduling on bad actors
- Memory cost on stack growth could be an issue

33

Last but not least…

Coroutine is powerful, but not suitable in any situations.

Good for:
- Obviously web servers
- UI (wait for user response while doing background tasks)
- Filesystems
- …

Not best choice:
- CPU intensive computations
- Long running tasks without yielding

34

Q & A

